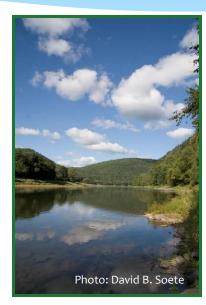
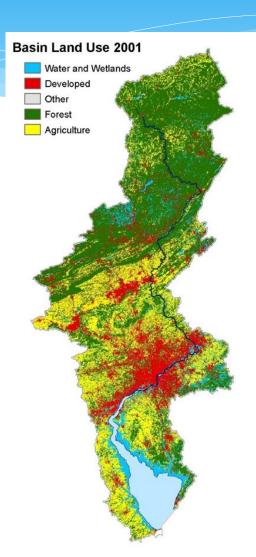
Delaware River Basin Commission

PFAS in Surface Water, Sediment and Fish from the Delaware River

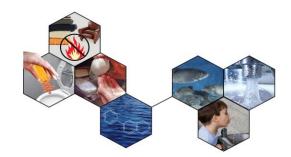

Ron MacGillivray, Ph.D. Senior Environmental Toxicologist Ron.MacGillivray@drbc.gov

American Water Resources Association Annual Conference Baltimore, Maryland

November 5, 2018

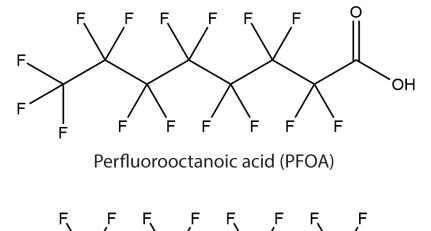

Why was the DRBC created in 1961?

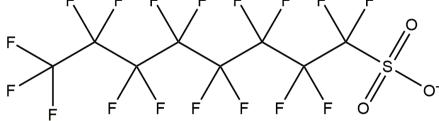
- Water supply shortages and disputes over the apportionment of the basin's waters;
- Severe pollution in the Delaware River and its major tributaries;
 - Serious flooding


Five Equal Members: Delaware New Jersey Pennsylvania New York Federal Government

Emerging Contaminants DRBC 2004 to 2018

- Pharmaceuticals and Personal Care Products (PPCP)
- ∉ Hormones
- Stain repellants/non-stick surfaces/fire fighting foams [PFAS]
- ∉ Flame Retardants [PBDE]
- Ø Detergents [NP]
- e Plasticizers [bis-phenol A]
- Surveys in surface water, fish and sediment




Why are Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) of Concern?

4

- * Properties
- * Uses
- * Sources
- * Stewardship
- * Alternatives
- * Discharges
- * Persistence
- * Toxicity
- * Bioaccumulation

Perfluorooctane sulfonate (PFOS)

https://journals.plos.org/plosbiology/article/figure?id=10.1371/ journal.pbio.2002855.g001

Human Toxicity

Human Health Effects

- * Monitored in blood serum general population (bind to protein)
- Association with liver damage, increased cholesterol, thyroid disease, decreased response to vaccines, asthma, decreased fertility and birth weight, pregnancy–induced hypertension/preeclampsia

Laboratory Animal

Primary effects in lab animals are liver, developmental and immune toxicity

EPA HA PFOS & PFOA 70 ng/L, NJDEP MCL PFNA 13 ng/L

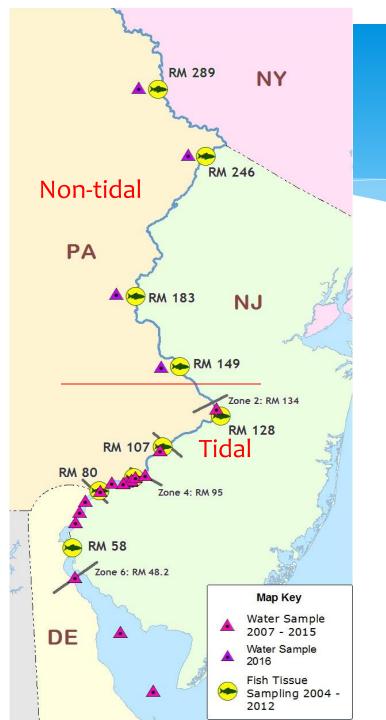
* Scientific understanding is evolving

Ecotoxicity

Ecological Effects

- * National WQC for aquatic life not derived
- * Long chain PFAS bioaccumulate
- * Many PFAS are persistent (short and long chain)
- * Moderately acute and slightly chronically toxic to aquatic organisms (survival, growth and reproduction)
 - * PNEC for PFOS 0.6 to 6.6 ug/L (Qi et al. 2011)
 - * PNEC for PFOA 1,250 ug/L (Hoke et al. 2015)
 - * PNEC for PFHxA (C6) 199 ug/L (Hoke et al. 2015)
- * Sublethal effects observed (e.g., histopathology, neurological and immune effects) non-standard tests

Water grab samples in HDPE bottles Fish samples are composites of five standard fillets. Sediment surficial grab with Ponar. Analytical Parameters & Methods: 13 compounds using LC/MS/MS Method

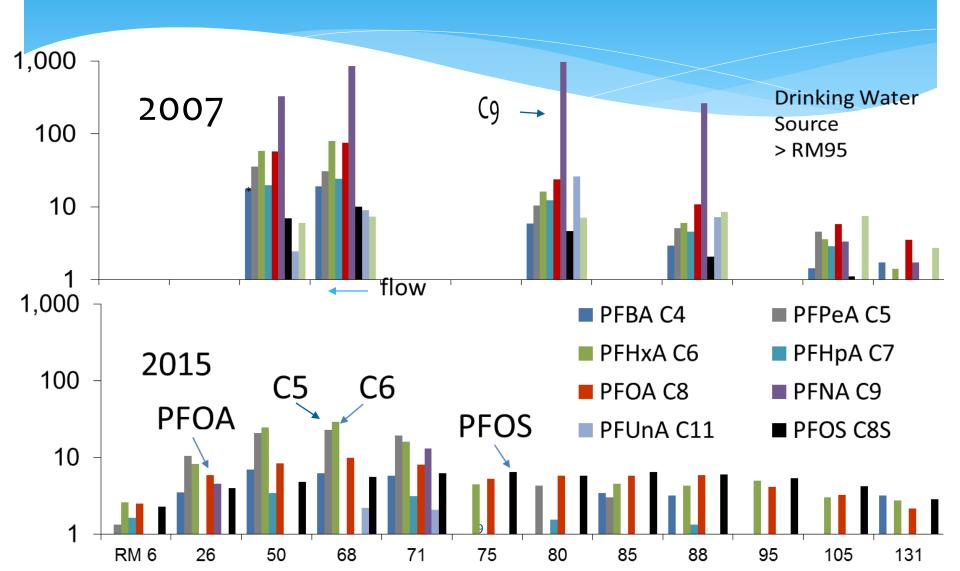

Sulfonates and Sulfonamide

- 4 Perfluorobutanesulfonate (PFBS)
- 6 Perfluorohexanesulfonate (PFHxS)
- 8 Perfluorooctanesulfonate (PFOS) Perfluorooctane sulfonamide
- 8 (PFOSA)

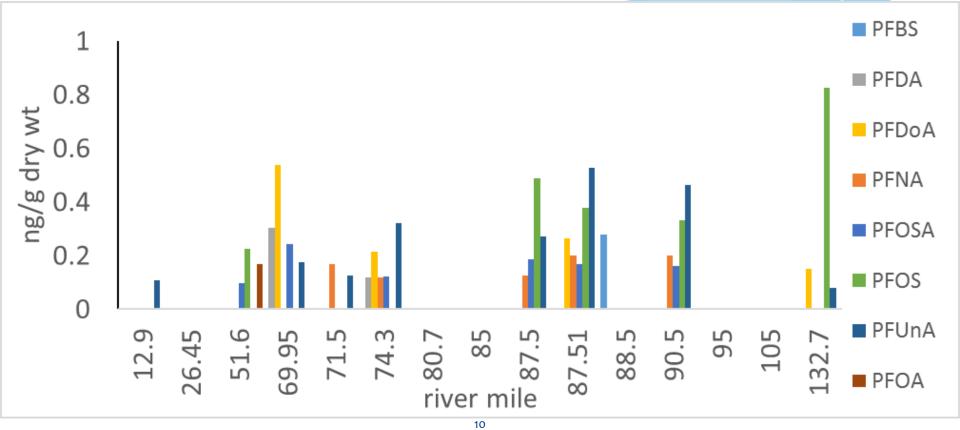
of carbons

Carboxylates

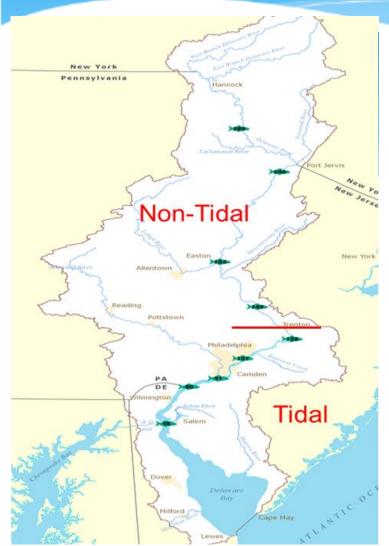
- 4 Perfluorobutanoate (PFBA)
- 5 Perfluoropentanoate (PFPeA)
- 6 Perfluorohexanoate (PFHxA)
- 7 Perfluoroheptanoate (PFHpA)
- 8 Perfluorooctanoate (PFOA)
- 9 Perfluorononanoate (PFNA)
- 10 Perfluorodecanoate (PFDA)
- 11 Perfluoroundecanoate (PFUnA)
- 12 Perfluorododecanoate (PFDoA)


PFAS Sites

Surface Water Samples Six tidal sites in 2007, 2008, 2009 Fifteen tidal sites in 2015 Four non-tidal sites in 2016


PFAS (ng/L) decreases in surface water vary by compound

PFAS in sediment 2016 similar to other urban areas



Sediment surficial grab with Ponar.

Sampling Locations and Fish Species 2004 - 2015

Non-Tidal Locations

Narrowsburg, NY	RM 290
Milford, PA	RM 246
Easton, PA	RM 183
Lambertville, NJ	RM 149

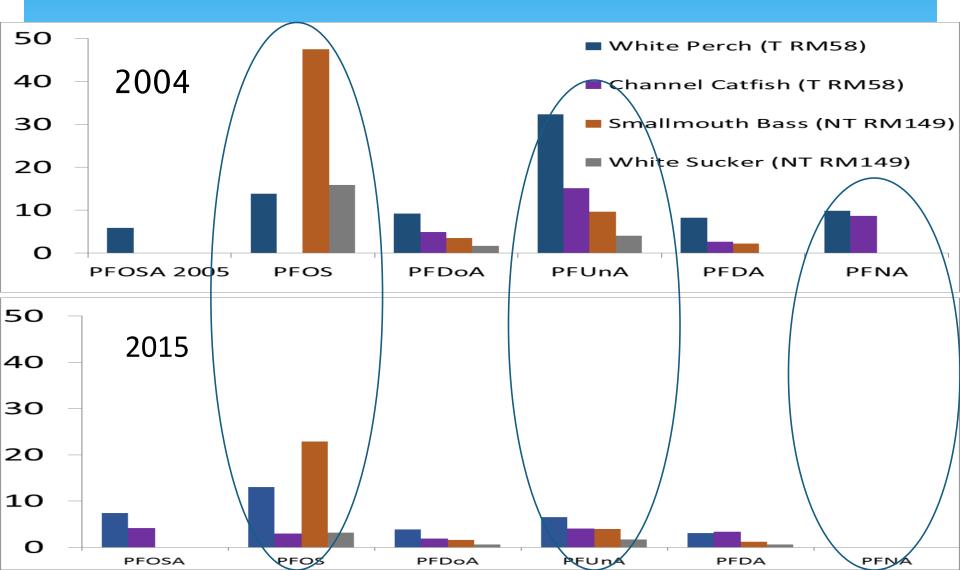
Tidal Location

Crosswicks Creek	RM 128
Tacony-Palmyra Br.	RM 107
Woodbury Creek	RM 91
Raccoon Creek	RM 80
Salem River	RM 58

Non-Tidal Fish Species

Catosomus commersonni (white sucker) *Mictopterus dolomieu* (smallmouth bass)

Tidal Fish Species


Ictalurus punctatus (channel catfish) Morone americana (white perch)

Sample Design

Collected periodically by electrofishing or hook & line Composite of five (5) fish of similar size of each species collected at each location (fillet)

PFAS (ng/g) in fish fillet vary by species, location and year

Next Steps

Ongoing

Fish – 2018 collection with PFAS analysis

Recommended

Extend list of PFAS analytes (e.g., replacement compounds)

Surface Water

- * Compile data from non-DRBC surveys in tidal river when available
- Deploy passive samplers in non-tidal river (seeking external funds),
 Sediment
- * Sample targeted non-tidal sites (seeking external funds)

Delaware River Basin Commission

Questions?

Ron MacGillivray, Ph.D.

Senior Environmental Toxicologist ron.macgillivray@drbc.gov

