Delaware River Basin Commission

Implementation of Antidegradation Policies and Practices in the Delaware River Special Protection Waters

NJ Water Environment Association Annual Conference & Exposition

Robert Limbeck, Sr. Aquatic Biologist Thomas J. Fikslin, Ph.D., Director, Science & WQ Management Delaware River Basin Commission
DELAWARE • NEW JERSEY
PENNSYLVANIA • NEW YORK
UNITED STATES OF AMERICA

May 10, 2017

Delaware River Basin Commission

Topics:

- Background of DRBC Special Protection Waters
- Assessing Measurable Change to Existing Water
 Quality in Lower Delaware River
- Implementation for DRBC dockets holders and NPDES permittees
- Existing Water Quality Atlas of the Delaware River

Special Protection Waters Reaches of the Delaware River

Special Protection Waters designated for entire non-tidal Delaware River

SPW rules cover ≈6,780 of the 13,800 sq. mi. Delaware River Basin watershed area

DRBC/NPS Scenic Rivers
Monitoring Program (SRMP)

~200 miles of Delaware River + most tributary watersheds

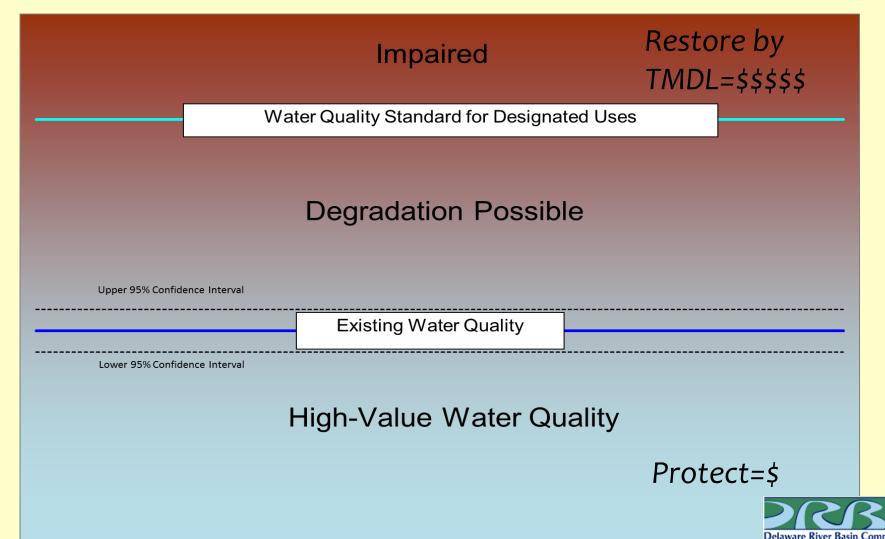
Special Protection Waters

- * Regulations effective in 1992 for Upper and Middle Delaware River. Lower Delaware River effective in 2005.
- * Require projects to demonstrate that they will not measurably change existing water quality (EWQ).
- * EWQ is currently defined by reach-wide average concentrations in Upper and Middle Delaware portions. ICPs and BCPs in Lower Delaware River.
- * Monitoring data collected from 2006 to 2011 in Upper and Middle Delaware River, and from 2009 to 2011 in the Lower Delaware River.

Special Protection Waters Objective: Antidegradation of Existing Water Quality

- It is the policy of the Commission that there be
 - no measurable change in existing water quality except towards natural conditions in waters considered by the Commission to have exceptionally high scenic, recreational, ecological, and/or water supply values.

- Sec 3.10.3A.2.


Assess to confirm this

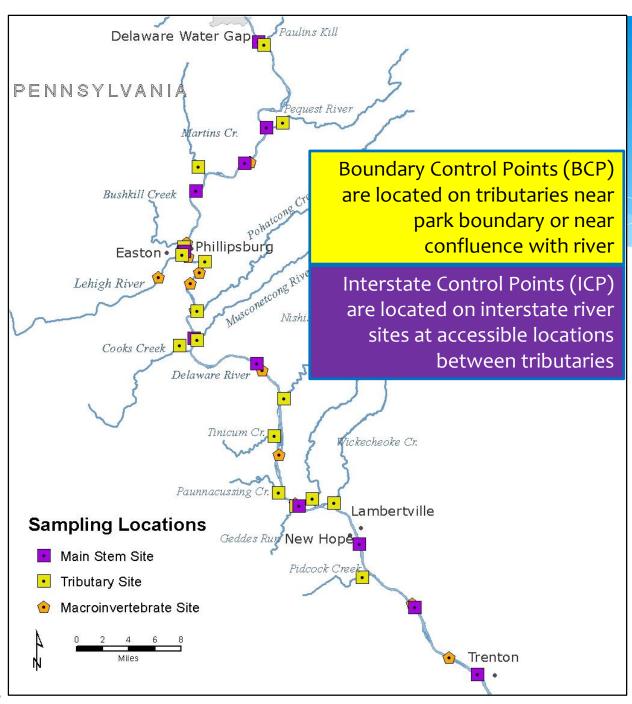
What is EWQ? Policy, Not Criteria

Comparison of Existing Water Quality versus Standards

Boundary Control Points (BCP) are located on tributaries near park boundary or near confluence with river

Interstate Control Points (ICP) are located on interstate river sites at accessible locations between tributaries

Deposit . West Branch Delaware River Beaver Kill PENNSYLVANIA Hancock Delaware River Equinunk Cree Little Eauinunk Cre allicoon Creek NEW YORK Upper Delaware Scenic & Recreational River Calkins Cree Tenmile River larrowsburg Sampling Locations Mongaup River Masthope Creek Main Stem Site Halfway Brook Tributary Site Lackawaxen River Neversink River Macroinvertebrate Site elaware River Vandermark Cr. Port Jervis


Upper Delaware (UPDE) Sites

SPW Rules 1992: Reach-wide Only, EWQ for Tributaries was not Described

29 sites: Site-Specific EWQ 2006-2011 (n=30-50) + state/USGS data

Designated as Outstanding Basin Waters

Assessment 1 Planned: 2019-2021

Lower Delaware (LDEL) Sites

EWQ established 2000-2004 (n=40-50)

SPW Rules passed 2008

Designated as Significant Resource Waters

Assessment 1: 2009-2011

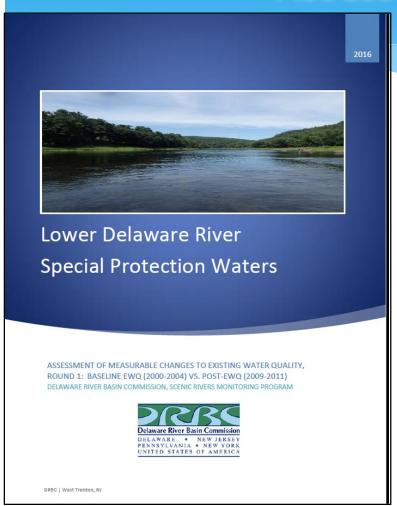
Assessment 2 planned 2019-2021

TABLE 2I. Definition of Existing Water Quality: Easton ICP

Delaware River at Northampton Street Bridge, Easton-Phillipsburg, PA/NJ, River Mile 183.82

Parameter (Y)	Definition of Existing Water Quality											
r arameter (1)	Median	Lower 95%CI	Upper 95%CI	Flow Relationships Site specific regression equation.								
Ammonia NH3-N (mg/l) *	<.05	<.05	< 0.05									
Chloride (mg/l)	16	14	17	Y = -0.00022184 Q + 16.751								
Chlorophyll a (mg/m³)	1.45	1.07	2.14									
Dissolved Oxygen (mg/l) mid- day*	8.10	7.90	8.58									
Dissolved Oxygen Saturation (%)	95%	92%	96%									
E. coli (colonies/100 ml)	31	24	64	Y = antilog (0.00004425 Q + 1.273)								
Enterococcus (colonies/100 ml)	145	80	250									
Fecal coliform (colonies/100 ml) *	100	64	130									
Nitrate NO3-N (mg/l) *	0.85	0.70	0.90									
Orthophosphate (mg/l)	0.02	0.01	0.02									
pH	7.55	7.41	7.70									
Specific Conductance (umhos/cm)	142	127	155	Y = -0.0024666 Q + 158.76								
Total Dissolved Solids (mg/l)	110	103	120									
Total Kjeldahl Nitrogen (mg/l)	0.35	0.26	0.46									
Total Nitrogen (mg/l) *	1.19	1.01	1.35									
Total Phosphorus (mg/l) *	0.05	0.04	0.06									
Total Suspended Solids (mg/l) *	4.0	3.0	5.0	Y = 0.00177536 Q - 4.8027								
Turbidity (NTU)	2.6	1.8	4.0	Y = antilog (0.00003836 Q + 0.1845)								
Alkalinity (mg/l)	34	30	39	Y = -0.00073929 Q + 39.867								
Hardness (mg/l)	48	45	52									

Existing Water Quality Definitions are contained in our Water Quality Regulations and in the new **EWQ Atlas**



SPW Program Advancements Since the Delaware Riverkeeper Petitions to DRBC and Initial Rulemaking

- First Assessment of Measurable Change was successfully completed
 - See Lower Delaware Measurable Change Assessment 2016
- Site-Specific Existing Water Quality is complete for 85 sites and growing
 - See Existing Water Quality Atlas of Delaware Basin SPW 2016
- Cumulative Watershed Assessment of Discharges with Models
 - Occurs during No Measurable Change Evaluation step of permitting
- Outreach is improving
 - Interactive Story Map service using ARC-MAP
 - Building R code, Shiny Apps, Dashboards to view water quality information
- USGS tools and studies have contributed greatly to SRMP success
- SRMP is integrated and complimentary with State monitoring
- U.S. EPA and NPS support have been critical to SRMP capabilities

Lower Delaware Measurable Change Assessment 2009-2011

DRBC Publication is Available

Released (pdf) July 2016

Executive Summary,

24 Chapters (one per site):

Within-site measurable changes

3 Appendices:

New ICP/BCP sites

Statistical Guide

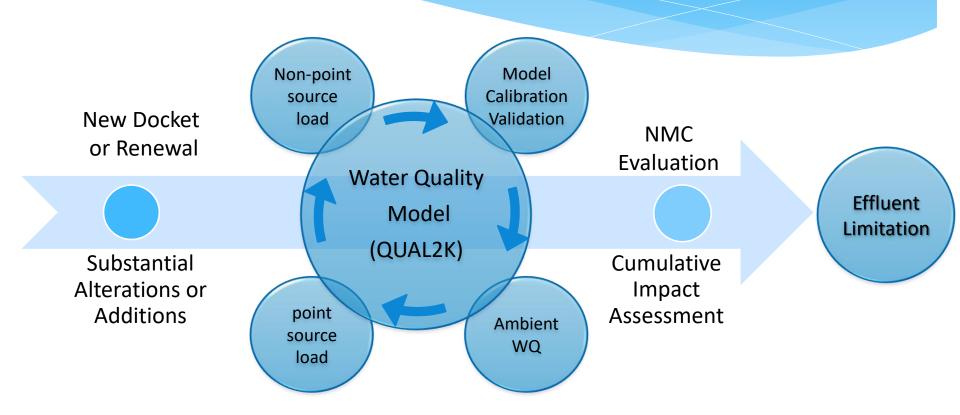
Flow Estimation Methods

http://www.state.nj.us/drbc/home/newsroom/news/approved/20160808_LDSPW-EWQrpt.html

Summary Matrix of Measurable Changes: 440 Within-Site Comparisons at a Glance

Good News:

88% of water quality tests showed no degradation


Site Color Key				Dark Blue =Interstate Control Point (ICP)						Dark Red =Pennsylvania Tributary Boundary Control Point (BCP)								k Green =New Jersey Tributary Boundary Control Point (BCP)							
		Del. River	Del. River at Washngtn	Pidcock Creek, PA	Delaware River at	Wicke- cheoke	Lockatong Creek, NJ	Delaware River at	Pauna- cussing	Tohickon Creek, PA	Tinicum Creek, PA	Nishi- sakawick	Del. River at Milford	Cooks Creek, PA	Musco- netcong	Del. River at RieglsvII	Pohat-cong Creek, NJ	Lehigh River, PA	Del. River	Bushkill Creek, PA	Martins Creek BA	Pequest River, NJ	Del. River at Belvidere	Paulins Kill River, NJ	Del. River
		at menton	Crossing	Cleek, FA	Lambrtvlle	Creek, NJ	Creek, NJ	Bulls Island	Creek, PA	CIEEK, FA	Cleek, FA	Creek, NJ	at milloru	Cleek, FA	River, NJ	at Kiegisvii	Creek, NJ	Kivei, FA	at Easton	Cleek, FA	Cleek, FA	Kiver, NJ	Belvidere	Kiver, No	Portland
	Parameter Site> Site Number>	1242 ICB	1418 ICP	1463 BCP	1487 ICP	1525 BCP	1540 BCP	1554 ICP	1556 BCP	1570 BCP	1616 BCP	1641 BCP	1677 ICB	1727 BCB	1746 BCP	1748 ICP	1774 BCP	1837 BCP	1020 ICB	1941 BCB	1907 BCP	1079 P.C.D.	1978 ICP	2070 BCP	2074 ICP
	Dissolved Oxygen (DO) mg/l	1343 ICP	1418 ICP	1463 BCP	1467 ICP	1525 BCP	1540 BCP	1554 ICP	1556 BCP	1570 BCP	1616 BCP	~	16// ICP	1/3/ BCP	1746 BCP	1748 ICP	1774 BCP	1837 BCP	1838 ICP	1841 BCP	1907 BCP	1978 BCP	1978 ICP	2070 BCP	2074 ICP
	Dissolved Oxygen Saturation %											~													
Field	pH, units																								
	Water Temperature, degrees C																								
	Ammonia Nitrogen as N, Total mg/l																								
ts	Nitrate + Nitrite as N, Total mg/l																**								
Nutrients	Nitrogen as N, Total (TN) mg/l																**								
lutr	Nitrogen, Kjeldahl, Total (TKN) mg/l																								
_	Orthophosphate as P, Total mg/l																								
	Phosphorus as P, Total (TP) mg/l																								
ria	Enterococcus colonies/100 ml	~			~																				
Bacteria	Escherichia coli colonies/100 ml	**	**	**	**	**	**			**	**	**													
Ř	Fecal coliform colonies/100 ml																								
	Alkalinity as CaCO3, Total mg/l																								
als	Hardness as CaCO3, Total mg/l											~													
ion	Chloride, Total mg/l			**		**	**	**	**	**		**	**	**	**	**	**	**	~	**	**	**	**		**
ent	Specific Conductance µmho/cm			**		**	**	~	**	**	**	**	**	**	**	~	**	**	~	~	~	**	~		
Conventionals	Total Dissolved Solids (TDS) mg/l																								
ပိ	Total Suspended Solids (TSS) mg/l																								
	Turbidity NTU																								
	KEY	= No indication of	indication of measurable change to EWQ						= Indication of n	Indication of measurable water quality change toward more degraded status							= Weak indication of measurable water quality change toward more degraded status								

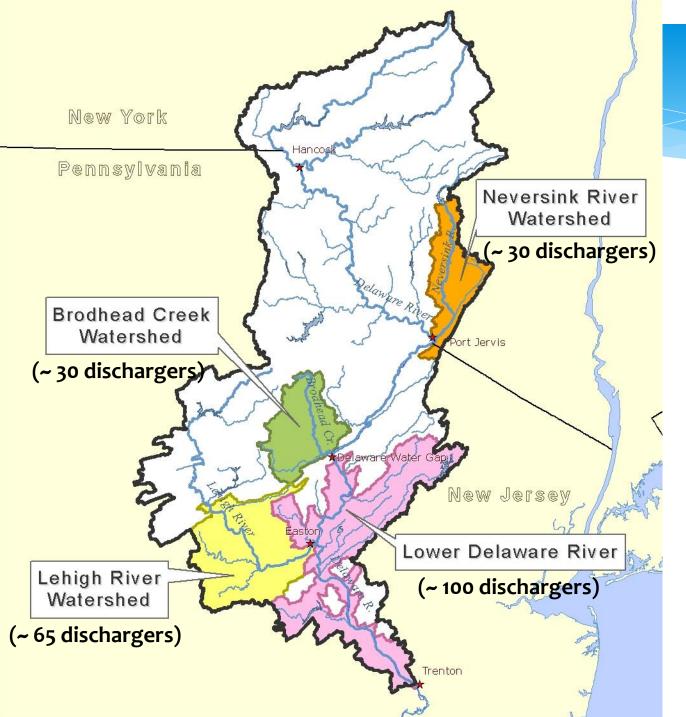
Lower Delaware Assessment Findings: Measurable Changes 2000-2011

88% of tests revealed no evidence of water quality degradation; many revealed water quality improvement.

- Nutrients improved at many sites since 2000. Only Pohatcong Creek increased.
- Chlorides and Specific Conductance increased at almost all locations (winter road salting is most likely cause). Further continuous monitoring underway; we want to work with coregulators on issue.
- E. Coli concentrations increased from Frenchtown southward.
- DRBC/NPS data compare well with USGS and State data. 30+ samples provide best resolution to detect measurable change.
 Detection limits now low enough to measure conc. in high quality streams.

No Measurable Change Evaluation for Docket holders

To date, of >150 SPW dockets, 33 had NMC evaluations for wastewater permits. Of these, 21 have resulted in effluent limitations maintain EWQ. (Namsoo Suk, personal communication 9/12/16).



Two Key Aspects of No Measurable Change Evaluations

- 1. Implementation to preserve NMC
 - Establishes wasteload allocations among sources to maintain EWQ utilizing WQ models where possible
 - Sets effluent limitations in a docket and/or permit
 - Not a TMDL
 - Manages water quality before exceedances occur
- 2. Assessment of NMC
 - Set multi-year instream monitoring program

Designed to preserve existing high water quality

Water Quality Models

Neversink River Watershed (NY)

Brodhead Creek Watershed (PA)

Lehigh River Watershed (PA)

Lower Delaware River (PA/NJ) Multiple BCPs/ICPs

Existing Water Quality Atlas of the Delaware River Special Protection Waters

Delaware River Basin Commission

Existing Water Quality Atlas of the Delaware River Special Protection Waters

DRBC Special Protection Waters Program

September 2016 – Edition 1.0

Maps, Watershed Population, Land Use & Flow Statistics, and Site-Specific Existing Water Quality Tables from West Branch Delaware River to Trenton

85 River Reaches & Watersheds → 88 by 2018 Upper Delaware: 11 ICP's, 19 BCP tribs. Middle Delaware: 7 ICP's, 20 BCP tribs. Lower Delaware: 10 ICP's, 18 BCP tribs. (28 DR sites & 57 tributary watersheds)

Best existing scientific knowledge of water quality, flow and characteristics of the Delaware River and its tributaries.

Planned Annual Updates and Additions including discharge inventory, new sites and parameters, updated population and land use, improved flow estimation.

Contacts

We are available to meet about more detailed discussion of these products.

There are many more slides and details: see me for more or request a presentation tailored to your organization!

Robert Limbeck, Senior Aquatic Biologist.
SRMP & Lower Delaware Project Manager;
Delaware River Biomonitoring Project Manager.
609-883-9500 ext. 230
Robert.Limbeck@drbc.nj.gov

John Yagecic, P.E. Manager, Water Quality Assessment. 609-883-9500 ext. 271

John.Yagecic@drbc.nj.gov

Dr. Namsoo Suk, PhD. Manager, Water Quality Modeling. 609-883-9500 ext. 305

Namsoo.Suk@drbc.nj.gov

Thomas Fikslin, PhD. Director, Science and Water Quality Management. 609-883-9500 ext. 253

Thomas.Fikslin@drbc.nj.gov

