Composite Overlay Pavement Design Example <u>1993 AASHTO Pavement Design</u>

Project Name and Location:

Route 123, MP 7.3 – 11.0 Hometown, NJ

Description:

This project will consist of the construction of a flexible overlay of an existing concrete pavement to extend Route 123 to intersect with Route I-80 in North Jersey.

General Information:

Reference:

Initial Serviceability, po	4.5
Terminal Serviceability, pt	2.5
Reliability Level, R	90%
Overall Standard Deviation, S	0.35
Performance Period	20 years

II-10 & NJ serviceability loss
II-10 & NJ serviceability loss
I-53 to I-64 or II-9, III-82 & NJ Reliability
I-62 or II-9 & NJ Standard Deviation
II-5 to II-8 & NJ Performance Period

Design Overlay Thickness, DoL

Step 1: Exiting pavement design

Existing slab thickness, inch	9
Type of load transfer	Mechanical - Doweled
Type of shoulder	bituminous

Step 2: Traffic Analysis

Traffic Data and Analysis:

Initial AADT	30,127	Based on data supplied by the
Final AADT	47,179	NJDOT Project Manager
CAR%	84	
CAR _f	0.0006	
LT%	8	
LT _f	0.163	
HT%	8	
HTf	1.655	
Year	20	
Days	365	
D _D %	58	II-7 & NJ Directional Distribution
D _L %	90	II-7, 8 & NJ Lane Distribution

• Calculate ESALs based on load equivalency factors for rigid pavements

II-7 to II-9 & D-12 to D-20 & & NJ Directional and Lane Distribution Factors

$$\mathbf{W}_{18} = \left(\frac{AADT_i + AADT_f}{2}\right) * (Car\% * Carf + LT\% * LTf + HT\% * HTf) * Years * 365 day / year$$
$$\mathbf{W}_{18} = \left(\frac{30,127 + 47,179}{2}\right) * (84\% * 0.0006 + 8\% * 0.163 + 8\% * 1.655) * 20*365 day / year$$
$$= 41,180,566$$

Design ESALs (in Design Lane) Initial Performance Period: Design ESALs = Accumulated ESALs * D_D*D_L 41,180,566*0.580*0.90=21,496,255

Accumulated ESALs Over 20 years in all lanes in each directions:

Step 3: Condition Survey (Existing pavement)

JPCP/JRCP:

(1)	Number of deteriorated transverse joints per mile		
(2)	Number of deteriorated transverse cracks per mile		
(3)	Number of full-depth AC patches, exception-ally wide		
	joints (greater than 1 inch), and expansion joints per		
	mile (except at bridges)		
(4)	Presence and overall severity of PCC durability		
	problems		
	(a) "D" cracking: low severity (cracks only),		
	medium severity (some spalling), high		
	severity (severe spalling)		
	(b) Reactive aggregate cracking: low,		
	medium, high severity		
(5)	Evidence of faulting, or pumping of fines or water at		
	joints, cracks, and pavement edge		

Step 4: Deflection Testing

(With FWD or HWD set up with sensors at d_0 , d_{12} , d_{24} , and d_{36} and 5.9 inch radius plate and normalized to 9,000lb.)

AREA=6*
$$\left[1+2*\left(\frac{d_{12}}{d_0}\right)+2*\left(\frac{d_{24}}{d_0}\right)+\left(\frac{d_{36}}{d_0}\right)\right]$$

Backcalculated effective Dynamic k-value for subbase and subgrade combination:

(based on d_0 and AREA for 1 test per slab)

(1) Average dynamic k-value: 300 pci

(2) Average static k-value: 300/2 = 150 pci

Figure 5.10, page III-118 and Figure 5.11, page III-119

(3) Estimated PCC slab elastic modulus: $ED^3=1.5x10^9$, therefore $E_{pcc}=2,057,613$ psi

(4) Joint Load Transfer

$$\Delta LT = 100 * \left(\frac{\Delta ul}{\Delta l}\right) * B \qquad B = \frac{d_0}{d_{12}} \text{ center slab deflections}$$

Average Percent Load Transfer:62J: 3.5(Use load transfer restoration to improve load transfer efficiency >70%)Restored Average Percent Load Transfer:73J: 3.5

Step 5: Coring and Material Testing (based on backcalculations)

(1) PCC modulus of rupture (S'_c):

$$S'_c = 43.5 * \left(\frac{E}{10^6}\right) + 488.5 = S'_c = 43.5 * \left(\frac{2057613}{10^6}\right) + 488.5 = 578 \text{ psi}$$

Step 6: Determination of required slab thickness for future traffic, (D_f)

Required slab thickness for future traffic, (D _f):	11.7 Figure 3.7, Page II-45 &46
(9) Subdrainage capacity of existing slab, C_d	1.0
(8) Overlay standard deviation, S_o	0.35
(7) Overlay design reliability, R	90%
(6) Loss of support of existing PCC slab:	(assume LS=0)
(5) Elastic modulus of existing PCC slab: (based on backcalculations in step 4)	2,057,613 psi
(4) PCC modulus of rupture of existing slab: (based on backcalculations in step 5)	578 psi
(3) J, load transfer factor of PCC slab:(from backcalculation in step 4)	3.2
(2) Design PSI loss:	2.0
(1) Effective static k-value beneath existing PCC slab:(from backcalculation in step 4)	150 pci

*[If the required slab thickness <= the existing slab thickness, no structural improvement is needed. To improve the functional ability of the pavement (ride

quality, skid resistance, etc), use a 4 inch overlay with longitudinal and transverse saw-and-seal]

Step 7: Determination effective slab thickness of existing pavement, (D_{eff})

D_{eff}=F_{jc}*F_{dur}*F_{fat}*D

Where: D, existing PCC slab thickness, inch

- (1) F_{jc}, Joint and crack adjustment factor: 0.97
- (2) F_{dur}, Durability adjustment factor: 1.0

(3) F_{fat}, Fatigue Damage Adjustment factor 0.97

 $D_{eff} = F_{jc} * F_{dur} * F_{fat} * D = 0.97 * 1.0 * 0.97 * 9 = 8.46$ inch

Step 8: Determination the required overlaythickness, (D_{OL})

 $D_{OL} = A(D_f - D_{eff})$

 $\begin{array}{l} A = 2.2233 + 0.0099 (D_{f} - D_{eff})^{2} - 0.1534 (D_{f} - D_{eff}) \\ = 2.2233 + 0.0099 (11.7 - 8.46)^{2} - 0.1534 (11.7 - 8.46) = 1.83 \end{array}$

 $D_{OL} = A(D_{f}-D_{eff}) = 1.83(11.7-8.46) = 5.9$ inch, use 6.0 inch

Figure 5.12, page III124