Flexible Overlay Pavement Design Example <u>1993 AASHTO Pavement Design</u>

Project Name and Location:

Route 123, MP 7.3 – 11.0 Hometown, NJ

Description:

This project will consist of the construction of a flexible overlay of an existing flexible pavement to extend Route 123 to intersect with Route I-80 in North Jersey.

General Information:

rs

Reference:

II-10 & NJ serviceability loss
II-10 & NJ serviceability loss
I-53 to I-64 or II-9, III-82 & NJ Reliability
I-62 or II-9 & NJ Standard Deviation
II-5 to II-8 & NJ Performance Period

Design Overlay Thickness, DoL

(Thickness precision: Round up to nearest 1/2 inch)

 $SN_f = SN_{eff}$ -(milling depth)*(a_1 of existing HMA)+(a_{OL} * D_{OL})

 SN_{OL} = Structural Number of the Overlay = $(a_{OL}*D_{OL})$

 $a_{\mbox{\scriptsize OL}}\mbox{=}$ Structural layer coefficient of the HMA overlay material

 D_{OL} = Thickness of the HMA overlay, inch

SN_f= Structural Number to carry future traffic

SN_{eff}= Structural Number of the existing pavement

Step 1: Exiting pavement design

Thickness	Layer Material
2 inch	I-4 Bituminous Surface Cource
8 inch	I-2 Bituminous Base Cource
8 inch	DGABC
8 inch	Subbase
26 inch	.Total

Step 2: Traffic Analysis

Traffic Data and Analysis:

Initial AADT	30127	Based on data supplied by
Final AADT	42,628	the NJDOT Project Manager

Step 4 III-96 or Figure 5.8 III-103

Page III-94

CAR%	84	
CAR _f	0.0008	
LT%	8	
LT _f	0.163	
HT%	8	
HTf	1.655	
Year	20	
Days	365	
DD%	58	II-7 & NJ Directional
		Distribution
DL%	90	II-7, 8 & NJ Lane
		Distribution

Step 3: Condition Survey

Surface has extensive deterioration and raveling. There is approximately ³/₄ inch of rutting and 10% moderate longitudinal and transverse cracks.

Step 4: Deflection Testing

Effective Roadbed Soil Resilient Modulus Data:

Month	Monthly MR		
1 January	20000	II-12 to II-16 & I-13 to	I-15 &
2 February	20000	III-91-97 & NI Regional Season Le	noths
3 March	2800		ingtino
4 April	4500		
5 May	6500		
6 June	7200		
7 July	7600		
8 August	8000	Laboratory MR values for estimated	
9 September	8000	conditions and stress levels.	
10 October	7500		
11 November	1000		
12 December	18000		
Effective MR	6000		

Step 5: Coring and Material Testing (backcalculated material properties will be used to estimate existing material properties)

Deterioration is limited to the surface course.

Step 6: Determining required structural number for future traffic

Accumulated ESALs Over 20 years in all lanes in each directions:

II-7 to II-9 & D-3 to D-11 & II-7 & II-8 & NJ Directional and Lane Distribution Factors

$$\mathbf{W}_{18} = \left(\frac{AADT_i + AADT_f}{2}\right) * (Car\% * Carf + LT\% * LTf + HT\% * HTf) * Years * 365 \quad day / year$$
$$\mathbf{W}_{18} = \left(\frac{30,127 + 42,628}{2}\right) * (84\% * 0.0008 + 8\% * 0.163 + 8\% * 1.655) * 20 * 365 \, day / year$$
$$= 41,180,995$$

Design ESALs (in Design Lane) Initial Performance Period: Design ESALs = Accumulated ESALs * D_D*D_L 41,180,995*0.580*0.90=23,734,332

Design Structural Number Calculation, SN_f: = 6.30

Step 7: Determining effective structural number of existing pavement, (SN_{eff})

From FWD

 $SN_{eff} = 0.0045 * D * \sqrt[3]{E_p} = 5.76$

D= Total thickness of all pavement layers of existing pavement above the subgrade, inch E_p = Effective combined modulus of all pavement layers above the subgrade, psi

From condition estimate

Thickness	Layer Material	Estimated Layer Coefficient	Estimated SN
2 inch	I-4 Bituminous Surface Cource	.35	0.70
8 inch	I-2 Bituminous Base Cource	.44	3.52
8 inch	DGABC	.14	1.12
8 inch	Subbase	.08	0.64
		Total	5.98

Use $SN_{eff} = 5.76$

Step 8: Determining overlay thinkness, (D_{OL})

The project will be milled 2 inch. The existing HMA $a_1 = 0.39$

 $SN_{OL} = \,SN_f$ - $SN_{eff} + (milling depth) * (a_1 \mbox{ of existing HMA}) =$

$$=6.30 - 5.76 + (2)(0.39) = 1.32$$

* DoL=
$$\frac{1.32}{0.44} = 3.0$$
 inch

Thickness	Layer Material	Estimated Layer Coefficient	Estimated SN
3 inch	HMA 12.5H76 Surface Course	.44	1.32
2 inch	milling	.35	70
2 inch	I-4 Bituminous Surface Cource	.35	0.70
8 inch	I-2 Bituminous Base Cource	.44	3.52
8 inch	DGABC	.14	1.12
8 inch	Subbase	.08	0.64
		Total	6.60

 $\begin{array}{lll} SN(6.60 & _{SN_{\rm f}}(\,6\,.\,30\,) \\ SN_{OL} \left(1.32\right) & SN_{OL} = 1.32 \end{array} \qquad \mbox{Acceptable Design} \end{array}$